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We calculate stationary configurations of superposed states “soliton + cnoidal wave lattice” of the vector
nonlinear Schrödinger equation, using the Darboux transformation technique. The obtained expressions contain
the Jacobi elliptic and theta functions, and are easily manageable. There are five stationary configurations, in
which one of the defocusing media is stable, while those of the focusing medium are classified into two weakly
unstable and two unstable. The checking of the solutions as well as the construction of their typical shapes is
accomplished with the help of symbolic packageMATHEMATICA .
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Recently there has been new interest on optically induced
lattices and the localization of light in those gratings[1–3]. It
was shown that the vector nonlinear Schrödinger(VNLS)
equation

]zc j = i]x
2c j + 2issuc1u2 + uc2u2dc j, j = 1,2 s1d

describes the interaction of light with those gratings in a
photorefractive crystal in the limit of weak saturation regime.
Strong incoherent interaction of such a grating with a probe
beam facilitates the formation of a noble type of a composite
optical soliton, where one of the components[described by
c1 in Eq. (1)] creates periodic photonic structure, while the
other component(c2) experiences Bragg reflection from this
structure and forms gap solitons.

The dynamics of the band-gap lattice solitons can be ap-
proximately described by coupled nonlinear Schrödinger
equations[4], which reduce to VNLS equation(1) under a
proper limit [5]. Reference[3] discusses many important
physical properties of the solutions of(soliton + lattice) type
of these equations through numerical studies. Especially the
stability and classifications of the solutions describing these
composite states are discussed in depth. Clearly, it will be
helpful if we can find analytic expressions of solutions de-
scribing these composite states. These general analytical so-
lutions can be used to obtain some important characteristics
of lattice solitons in a simple form. Of course the analytic
expression is only possible for the integrable nonlinear equa-
tion, which in this case corresponds to the so-called desatu-
rable limit.

Quasiperiodic solutions in terms ofN-phaseu functions
for the VNLS equation are derived in Ref.[6]. The(soliton +
lattice) solution can be obtained from these general solutions
by taking degenerate limit of the two-phase solution, see Ref.
[7] for application of this procedure to the case of single-
component nonlinear Schrödinger equation(NLSE). But so-
lutions obtained by above finite-band method have the so-
called “effectivization” problem, which is related to
extracting the physical solutions by taking proper initial con-
ditions [8,9]. Much more, these solutions have rather com-

plicated form, which makes them difficult to apply to real
physical situations.

To get around these difficulties, various direct methods
using appropriate ansatz are employed to obtain a series of
special periodic solutions[10,11]. For example, Ref.[11]
employs the following ansatz:

c1 = ÎF`2 + A` + Beiusz,xd, c2 = ÎG`2 + D` + Eeifsz,xd,

s2d

where `=`sx−cz,g2,g3d is the Weierstrass function. It is
easy to see that the absolute values of these solutions(both
uc1u , uc2u) are periodic over the entirex axis. Much more, to
obtain soliton solutions from Eq.(2), it is required to take
special values ong2, g3. But from this procedure, a pair of
solitons emerge inc1, c2 simultaneously. Contrary to these
facts, our solutions, for example in Eq.(13), are constituted
by a solitonsc2d plus a periodic latticesc1d, the periodicity
of which is distorted around the soliton due to their nonlinear
coupling. It is clear that the characters of special solutions
(2) from ansatz are different from those of ours, and they do
not provide the required analytic solutions for solitons in a
lattice. In this paper, we employ a simple, but powerful soli-
ton finding technique based on the Darboux transformation
(DT) [12] to obtain (soliton +lattice) solutions. The results
are compact and easily manageable, at least when we use
symbolic packages such asMATHEMATICA . See the related
problem in the case of single-component nonlinear
Schrödinger equation in Ref.[13].

We first bring the VNLS equation into a matrix form in

terms of 333 matricesE, T and Ẽ=fT,Eg,

E = 1 0 sc1 sc2

− c1
* 0 0

− c2
* 0 0

2 , T = 1i/2 0 0

0 − i/2 0

0 0 − i/2
2 , s3d

such that

]zE = ]x
2Ẽ − 2E2Ẽ. s4d

One can readily check that the components of Eq.(4) are
indeed equivalent to the VNLS equation in Eq.(1). The sig-
natures is either 1 or −1 depending on whether the group
velocity dispersion is abnormalss=1d or normalss=−1d, or*Electronic address: hjshin@khu.ac.kr
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the waveguide is self-focusingss=1d or self-defocusingss
=−1d. One advantage of using matrices is that we can write
down the associated linear equation(Lax pair):

s]x − E − ibTdC = 0, s]z − EẼ− ]xẼ + ibE − b2TdC = 0,

s5d

where b is an arbitrary number andCsz,x,ld is a three-
component vector.

We now apply the DT to obtain a superposed solution of
(soliton + cnoidal wave lattice). When a DT is applied on a
given starting solution(cnoidal wave, in this case), it gives a
new solution of type(soliton + starting solution) [14,15]. Let
us denote a starting solution asc1=c1

0, c2=c2
0. At this point,

we need a solution of the linear equations(5) where ci, i
=1,2 in E are substituted by the starting solutions,ci

0, i
=1,2. Wedenote this solution as a three-component vector

C = 1s0

s1

s2
2 .

The DT now gives the wanted superposed solutionci
s, i

=1,2 by

ci
ssz,xd = ci

0sz,xd − 2bs
s0si

*

us0u2 + s o
j=1,2

usju2
, i = 1,2. s6d

In fact, it can be explicitly checked thatci
s, i =1,2 in Eq.(6)

are new solutions of the VNLS equation(1) by using the fact
that si satisfy the associated linear equations(5).

We need stable configurations of superposed states, which
avoid modulational instabilities. Numerical studies in Ref.
[3] show there exist two weakly(oscillatory) unstable con-
figurations in a focusing medium(denoted by cases I and II)
and one(linearly and dynamically) stable configuration in
the defocusing case(case III). There are two more stationary
configurations, though they are unstable. We explain the cor-
responding analytic solutions of these three cases(I, II, and
III ) in sequence, in addition to one unstable configuration.
The remaining unstable one can be similarly constructed, but
is not presented in this paper. We first describe the DT
method with the starting solution of dn-type(A1 in the nota-
tion of Ref. [3]), even though the resulting configuration is
unstable. For the starting solution

c1
0sz,xd = p dnspx,kdeip2s2−k2dz, c2

0 = 0, s7d

(cn, dn, sn are the standard Jacobi elliptic functions andk
P s0,1d is the modulus of the Jacobi function. As far as
elliptic functions are involved we employ terminology and
notation of Ref.[16]) the solution of the linear equation be-
comes

s0 = expfip2s2 − k2dz/2gexpfisgz+ dpxdg
Qspx− ud

Qspxd
,

s1 = − expf− ip2s2 − k2dzg
snu dnspx− ud

cnu
s0,

s2 = a expsbx/2 − ib2z/2d. s8d

Here,a is an arbitrary constant and the parameterb is related
to a real parameteru as

b = − p
dnu

snu cnu
, s9d

andg, d in Eq. (8) are

g = −
p2

2
Fdn2u

cn2u
−

1

sn2u
G ,

d = − i
Q8sud
Qsud

−
i

2

dnu

snu cnu
+ i

snu dnu

cnu
. s10d

Here the Jacobi theta functionQ is defined by the complete
elliptic integral of the first(second) kind KsEd,

Qsud = u4Spu

2K
D = 1 + 2o s− dnqn2

cosSnpu

K
D , s11d

with q=exps−pK8 /Kd, K8;KÎs1−k2d. To check thats0, s1,
s2 in Eq. (8) indeed satisfy the linear equation(5), we use the
following identity [16,17];

E
0

u

dn2udu=
Q8sud
Qsud

+
E

K
u. s12d

Using Eq.(12) and the addition theorem of Jacobi’s elliptic
functions, the]x part of the linear equation(5) can be proved.
]z-part equation is similarly proved using identities of elliptic
functions. This type of solution was first introduced by Sym
in a different context(description of vortex motion in hydro-
dynamics) [18]. It was then applied to an NLSE-related
problem in Ref.[13].

Then, the DT in Eq.(6) gives the superposed configura-
tion of “soliton + cnoidal wave”:

c1
s = expfip2s2 − k2dzgpHdnpx− 2

dnu dnspx− ud
cn2u

3S1 +
sn2u dn2spx− ud

cn2u
+ a2M2D−1J ,

c2
s = expFip2S1 +

dn2u

sn2u
DzGap

dnu

snu cnu

3FS1 +
sn2u dn2spx− ud

cn2u
DYM + a2MG−1

, s13d

where

M = expF− pSQ8sud
Qsud

+
cnu dnu

snu
DxG Qspxd

Qspx− ud
. s14d

Here, c1
s describes a distorted periodic lattice andc2

s de-
scribes a soliton. Figure 1 shows the superposed configura-
tion of Eq. (13). The solid line showsc1 component(at z
=0) while the dashed line is forc2 component with param-
etersp=1, k=0.9, u=2.9, b=1.87,a=1. Here parametersu
andb are related by Eq.(9).
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The starting solution(periodic lattice) for the cases I and
II is (A2 in the notation of Ref.[3])

c1
0sz,xd = kp cnspx,kdeip2s2k2−1dz, c2

0 = 0. s15d

This lattice can be obtained from the dn lattice by using an
identity dnsku,1 /kd=cnsu,kd. Similarly, a simple way to ob-
tain the superposed configuration of the case I is by substi-
tuting k→1/k, p→kp in Eq. (13). Explicit expressions from
this procedure are

c1
s = expfip2s2k2 − 1dzgkpHcnpx− 2

cnu cnspx− ud
dn2u

3S1 +
k2sn2u cn2spx− ud

dn2u
+ a2uMu2D−1J ,

c2
s = expFip2Sk2 +

cn2u

sn2u
DzG2ap

cnu

snu dnu

3FS1 +
k2sn2u cn2spx− ud

dn2u
DYM* + a2MG−1

,

s16d

where

M = expF− pSQc8sud
Qcsud

+
cnu dnu

snu
DxG Qcspxd

Qcspx− ud
,

Qcsxd ; 1 + 2o
n=1

`

s− dnexpS− n2p
K8

K − iK8
Dcos

npx

K − iK8
.

s17d

Figure 2 shows the superposed configuration in Eq.(16). The
solid line showsc1 component(at z=0) while the dashed
line is for exps−2.31idc2(at z=0) with parametersp=1, k
=0.9, u=2.9, b=0.58,a=1.

The superposed configuration of the case II can be ob-
tained from the case I by substitutingu→u+ iK8. Explicit
expression from this substitution is

c1
s = expfip2s2k2 − 1dzgkpHcnpx+ 2

snu dnu dnspx− ud
k2cn2u snspx− ud

3S1 +
dn2spx− ud

k2cn2u sn2spx− ud
+ a2uMu2D−1J ,

c2
s = expfip2sk2 − dn2udzg2ap

dnu snu

cnu

3FS1 +
dn2spx− ud

k2cn2u sn2spx− udDYM* + a2MG−1

,

s18d

where

M = expF− pSQc8su + iK8d
Qcsu + iK8d

−
cnu dnu

snu
DxG Qcspxd

Qcspx− u − iK8d
. s19d

Figure 3 shows the superposed configuration in Eq.(18).
The solid line showsc1 component atz=0 while the dashed
line is for exps−2.84idc2 at z=0 with parametersp=1, k
=0.9, u=2.9, b=1.73,a=1.

Finally, the superposed configuration of the case III(sn
lattice, defocusing medium,A0 in the notation of Ref.[3]) is
obtained from the dn-lattice result in Eq.(13) by substituting

FIG. 1. A bright soliton on a dn background. Solid line:c1;
dashed line:c2, with parametersp=1, k=0.9, u=2.9, b=1.87, a
=1.

FIG. 2. A bright soliton on a cn background, case I. Solid line:
c1; dashed line:c2, with parametersp=1, k=0.9, u=2.9, b=0.58,
a=1.

FIG. 3. A bright soliton on a cn background, case II. Solid line:
c1; dashed line:c2, with parametersp=1, k=0.9, u=2.9, b=1.73,
a=1.
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k→ ik, p→ ip, u→ iu. Explicit expressions from this proce-
dure are

c1
s = expf− ip2sk2 + 1dzgkpHsnspx+ Kd − 2

s1 − k2dsnu

k2cn2u snspx− ud

3S1 −
dn2u

k2cn2u sn2spx− ud
− a2uMu2D−1J ,

c2
s = exp hip2fk2 + s1 − k2d/dn2ugzj2aps1 − k2d

snu

cnu dnu

3FS1 −
dn2u

k2cn2u sn2spx− udDYM* − a2MG−1

,

s20d
where

M = expF− pSQs8su − K − iK8d
Qssu − K − iK8d

−
cnu

snu dnu
DxG Qsspxd

Qsspx− u + K + iK8d
,

Qssxd ; 1 + 2o
n=1

`

s− dnsn+1dexpS− n2p
K

K8
Dcos

inpx

K8
.

s21d
Figure 4 shows the superposed configuration in Eq.(20). The
solid line shows −ic1, while the dashed line is forc2 with
parametersp=1, k=0.9, u=2.9, b=1.29,a=1.

In this paper, we give explicit expressions for four station-
ary configurations of “soliton + cnoidal wave lattice,” each
having background lattices of dn, cn(cases I and II), and sn
(case III). In the case of cn background, we obtain a new
solution (case II) from a given one(case I) by taking a sub-
stitution of u→u+ iK8. Similarly, we can obtain another sta-
tionary solution from the solution(13) having dn-type cnoi-
dal background. Thus we conclude that there are five
stationary configurations of superposed states, where two of
them(dn lattice) are unstable, other two(cases I and II of cn
lattice) are weakly stable, and final one(case III of sn lattice)
is stable. The relation of our solutions with the band-gap
structure of the linear spectrum of the periodic structure can
be found in Ref.[3].
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